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Introduction

In this paper, we introduce p-cyclotomic rings and ideals, and examine how they can be

utilized to prove cases of Fermat’s Last Theorem—a conundrum that took over 350 years

to solve completely—when p is a regular prime.

History

In the late 1630’s, Pierre de Fermat first conjectured that xn + yn = zn does not have

nonzero integer solutions for x, y and z when n > 2, claiming he had a remarkable proof

too large for his margin. This note was discovered after he passed; however, Fermat’s

own proof was never discovered for anything other than n = 4, leaving a mystery for

mathematicians after his death.

For centuries, number theorists fought with Fermat’s Last Theorem. Euler had an

attempt for n = 3 that was flawed at first, but was eventually corrected. While proofs for

specific exponents emerged over time, a general solution remained elusive.

In the 19th century, progress on the problem was made with Carl Friedrich Gauss’s

introduction of cyclotomic fields and Ernst Kummer’s use of ideal numbers to handle fac-

torization within them. Kummer eventually proved FLT for all regular primes by utilizing

the ring Z[ζp], where ζp is a primitive pth root of unity for an odd, regular prime p.

Despite the progress made by Gauss and Kummer, FLT was not solved in full until 1994

by Andrew Wiles, who proved FLT by linking elliptic curves and modular forms through

the Modularity Theorem.

Even though the theorem has been fully proved, the mathematics developed in the

pursuit of its solution, especially cyclotomic numbers and fields, continue to be fundamental

in modern number theory research.
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Background

Roots of 1

In the real numbers, the roots of 1 are +1 and −1. In the complex numbers, however,

there are more options: the roots of unity . The nth roots of unity are defined as:

Un := {ωk = e−2πi×k/n | 1 ≤ k ≤ n}

As depicted below, roots of unity can be visualized as equal subdivisions of the unit

circle in the complex plane. Each set Un is closed under multiplication, contains a unique

multiplicative identity 1, and a unique multiplicative inverse ω−1
k for each element ωk.

R

Im

ω1

ω2

ω3

3rd roots of unity (U3)

R

Im

ω1

ω2

ω3

ω4

4th roots of unity (U4)

R

Im

ω1
ω2

ω3
ω4

ω5

5th roots of unity (U5)

A primitve root ζ (or for more specificity, ζp) can generate all the other roots; in

other words, when multiplied by itself repeatedly, it produces all other ωi in the set. In

the diagram above, we can see ω2 ∈ U4 is not a primitive root because (ω2)
2 = (−1)2 = 1,

so it cannot generate ω1 or ω3.

Another way to look at the nth roots of 1 are with cyclotomic polynomials:

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− ei2π×k/n) =
∏

(x− ζ) where ζ is a primitive nth root of unity
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Every cyclotomic polynomial is monic, of degree φ(n), and, most notably, irreducible

in Z. This gives us a way to factor the polynomial xn − 1 for any n into irreducibles:

xn − 1 =
∏
d|n

Φn(x)

As an example, x8 − 1 = (x4 + 1)(x2 + 1)(x+ 1)(x− 1) = Φ8(x)Φ4(x)Φ2(x)Φ1(x).

Rings

A ring (R,+,×) is an algebraic structure consisting of a non-empty set of elements R

with two binary operations—for consistency, referred to as addition + and multiplication

×—that satisfy the following Ring Axioms:

I. (R,+) is an abelian group: a nonempty set closed under addition, contains a unique

additive identity, and a unique additive inverse for each element

II. Multiplication is associative: a× (b× c) = (a× b)× c for all a, b, c ∈ R

III. Multiplication is distributive (on both sides): (a + b) × c = (a × c) + (b × c) and

a× (b+ c) = (a× b) + (a× c) for all a, b, c ∈ R

Because it’s a group under addition, there are additive inverses, but there need not be

multiplicative inverses. If multiplication is commutative, we call R a commutative ring .

If there is unique factorization, we call R a unique factorization domain , or UFD.

An ideal I is a subring (a subset of R that still fulfills all the axioms) where ar ∈ I

for all elements r ∈ R, a ∈ I. In other words, the subring is closed under multiplication

with elements in the subring and elements not in the subring, though still in R. We can

denote the ideal in terms of the generators: I =
(
g1, g2, ...

)
. An nonzero ideal I ̸= R is a

prime ideal if and only if I = JK =⇒ J = I or K = I for any ideals J,K ∈ R, and any

nonzero ideal can be written uniquely as a product of prime ideals (up to order).

We can use an ideal I ⊂ R to make a quotient ring R/I, which, for simplicity, act

like taking the ring elements “modded” by the ideal elements.
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p-Cyclotomic Integers

In class, we’ve used ring extensions of the integers Z such as the quadratic integers Z[
√
d]

and the Gaussian integers Z[i]. In essence, this type of ring extension consists of intro-

ducing a new element α to an existing ring R to create a new, larger set:

R[α] := {cnαn + ...c1α+ c0 | ci ∈ R}

This extension is called a polynomial ring in α over R, and may affect the primality

and irreducibility of elements in the original ring R. For example, we saw that when we

extend Z to Z[i], we get new primes: the Gaussian primes. Conversely, we saw that primes

in Z of the form 4k + 1 are no longer prime in Z[i]. We also introduced new units, ±i.

Similarly, we can extend the integers to the p-cyclotomic integers Z[ζp], where ζp

is the primitive pth root of 1 for some odd prime p. Primes also change here. Notably,

p ∈ Z[ζp] is no longer prime, because (1− ζp), (1− ζp)
2, ..., (1− ζp)

p−1 | p, and all of these

divisors are non-units. On the other hand, any element a where a = bc =⇒ b or c is a

unit is a cyclotomic prime . Finally, Z[ζp] is only a UFD when p is a regular prime .

For the sake of brevity, we will not prove, but these are some important facts in Z[ζ].

First, 1 + ζ is a unit. 1− ζ, 1− ζ2p , ..., 1− ζp−1 are all associates. p = u(1− ζ)p−1 for some

unit u.
(
1−ζ

)
is the only prime ideal in Z[ζ] that divides p. And lastly, any unit u divided

by its conjugate ū is a root of unity.

Results

We consider cases of xn + yn = zn where the power is a regular prime, p > 2.

xp + yp = zp =⇒
(
x

−y

)p

− 1 =

(
z

−y

)p

because p is odd

This is similar to the first steps of the method of intersecting lines. But here, we notice

the left hand side,
(

x
−y

)p
− 1, is a cyclotomic polynomial in Z[ζ], which we can expand to(

x
−y

)p
− 1 =

(
x
−y − 1

)(
x
−y − ζ

)
...

(
x
−y − ζp−1

)
. Multiplying both sides by −yp, we get:

xp + yp = (x+ y)(x+ ζy)...(x+ ζp−1y) = zp
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Because p is a regular prime, unique factorization holds. Now we consider two cases

where x, y, z are pairwise relatively prime integers: p ∤ xyz, and p | xyz.

Case 1: p ∤ xyz

Reconsidering the factors we got as ideals, we get
(
z
)p

=
∏(

x+ζiy
)
. Now we examine any

possible common ideal factors, denotedD, of
(
x+ζky

)
and

(
x+ζ ly

)
for some 0 ≤ k ≤ l < p.

By the rules of divisibility, D will also be a factor of the difference of the two:

x+ ζky − (x+ ζ ly) = ζky(1− ζ l−k) = uy(1− ζ) for some unit u

Because D | uy(1− ζ) and
(
1− ζ

)
| p =⇒ y

(
1− ζ

)
| yp, it must be that D divides the

ideal
(
yp

)
. We know D also divides the product,

(
z
)p
, but because gcd(yp, zp) = 1, this

forces D to be the unit ideal. Thus the ideals
(
x+ ζiy

)
are pairwise relatively prime.

Because the product of the ideals is
(
z
)p
, it must be that each ideal

(
x+ ζiy

)
= api for

some ideal ai. So
(
ai
)
is trivial in the class group of Q[ζ]. Because p is a regular prime,

that means ai is principal, with generator ai ∈ Z[ζ]. So we get x+ ζiy = uapi .

Looking more closely at ai, we can write an expansion in Z[ζ]:

ai = bp−1ζ
p−2 + ...+ b1ζ + b0

api ≡ bp−2 + ...+ b1 + b0 (mod pZ[ζ])

Because each unit divided by its conjugate is ±ζk for some 0 ≤ k ≤ p− 1, then:

x+ ζiy = uapi = ±ζkūapi

=⇒ x+ ζiy ≡ ±ζkūāip ≡ ±ζk(x+ ζ̄y) (mod pZ[ζ])

=⇒ x+ ζiy ∓ (yζk−i + xζk) ≡ 0 (mod pZ[ζ]) (1)

We consider the quotient ring (essentially equivalent to our mod above):

Z[ζ]/
(
p
) ∼= Z[X]/

(
p,Φp(X)

) ∼= Z/(p)[X]/Φp(X) ∼= Z/
(
p
)
[X]/(X − 1)p−1

5



In the last isomorphic ring, {1, X, ...,Xp−2} form a basis, but a linear combination

of any basis elements cannot be equivalent to zero without zero coefficients, so we get a

contradiction in eq. (1).

Case 2: p | xyz

Because x, y, z are relatively prime, that means p divides exactly one of them. Without

loss of generality, let p | z, so zp = pkẑp for some k ≥ 1 and ẑ relatively prime to p. Because

pk = u(1− ζ)pk(p−1) for some unit u, we combine with our original equality to get:∏(
x+ ζiy

)
= u

(
1− ζ

)pk(
ẑ
)p

where each
(
x+ ζiy

)
may not be relatively prime

We examine the quotient rings Z[ζ]/
(
1− ζ

)
and Z[ζ]/

(
1− ζ

)2
, noting that there are p

multiples of
(
1− ζ

)
in Z[ζ]/

(
1− ζ

)2
.

We observe that x + ζiy ≡ x + y mod
(
1 − ζ

)
for any 1 ≤ i ≤ p − 1. Because we’ve

let the prime ideal
(
1− ζ

)
divide

(
z
)p
, then

(
1− ζ

)
must divide some factor on the left as

well. Because all factors on the left are equivalent mod
(
1− ζ

)
, that means

(
1− ζ

)
divides

all of them. Now we move to Z[ζ]/
(
1− ζ

)2
.

Assume x + ζiy ̸≡ 0 mod
(
1 − ζ

)2
. So x + ζiy reduces to some nonzero multiple of

1− ζ mod
(
1− ζ

)2
. With the results above, we know that there are p multiples of 1− ζ in

Z[ζ]/
(
1− ζ

)2
, which means it must be that x+ ζiy ≡ x+ ζjy for some 0 ≤ i ≤ j ≤ p− 1.

So (1− ζj−i)y ≡ 0 mod
(
1− ζ

)2
. However, 1− ζk−i is an associate of 1− ζ, which forces

1− ζ to divide y, a contradiction. Thus x+ ζiy ≡ 0 mod
(
1− ζ

)2
.

This sets a lower bound of k ≥ 2.

Then there is some unique i0 such that x+ζi0y ≡ 0 mod
(
1−ζ

)2
. We replace y := ζi0y,

so we can now say x+ y ≡ 0 mod
(
1− ζ

)2
, and x+ ζiy ̸≡ 0 mod

(
1− ζ

)2
. Any common

ideal divisor of x, y will be of the form
(
x, y

)(
1 − ζ

)
. D is the same for any i, so the

complement
(
ci
)
must be a pth power and not divisible by

(
1− ζ

)
:(

x+ ζiy
)
=

(
x, y

)(
1− ζ

)(
ci
)p
i
and

(
x+ y

)
=

(
x, y

)(
1− ζ

)kp−(p−1)(
c0
)p
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We then observe that
(
ci
)p(

c0
)−p

is a principal fractional ideal, and since p is regular,(
ci
)(
c0
)−1

is also a fractional ideal. So
(
ci
)(
c0
)−1

= tiZ[ζ] for some ti ∈ Q(ζ)× that is

relatively prime to 1− ζ. So we can rewrite ideals with elements:

(
x+ ζiy

)(
x+ y

)−1
=

(
ti
)p
(1− ζ)−p(k−1) becomes

x+ ζiy

x+ y
=

bit
p
i

(1− ζ)p(k−1)

Then we consider the equation:

ζ(x+ ζ̄y) + (x+ ζy)− (1 + ζ)(x+ y) = 0

=⇒
ζbp−1t

p
p−1

(1− ζ)p(k−1)
+

b1t
p
1

(1− ζ)p(k−1)
− (1 + ζ) = 0

=⇒ ζbp−1t
p
p−1 + b1t

p
1 − (1 + ζ)(1− ζ)p(k−1) = 0

If we reconsider ti = mi/ni for mi, ni ∈ Z[ζ], we can factor out any powers of 1− ζ in

mi, ni to produce rational numbers c0, c1, cp−1 ∈ Z[ζ] that are relatively prime to
(
1− ζ

)
:

ζbp−1c
p
p−1 + b1c

p
1 − (1 + ζ)(1− ζ)p(k−1)cp0 = 0

=⇒ cpp−1 +
b1

ζbp−1
cp1 −

1 + ζ

ζbp−1
(1− ζ)p(k−1)cp0 = 0

=⇒ cpp−1 +
b1

ζbp−1
cp1 ≡ 0 mod pZ[ζ]

=⇒ b1
ζbp−1

≡
cpp−1

cp1
mod pZ[ζ]

Because cpp−1 and cp1 are both rational numbers, their quotient is a rational number,

and thus b1
ζbp−1

is a rational number. By Kummer’s Lemma, which states that a unit u is

the pth power of some m ∈ Z if u ≡ m (mod pZ[ζ]) when p is a regular prime, we can

replace b1
ζbp−1

with 1:

cpp−1 + cp1 −
1 + ζ

ζbp−1
(1− ζ)p(k−1)cp0 = 0

Here, k − 1 ≥ 1, whereas we previously had k ≥ 2, a contradiction by descent.

Thus there are no nonzero integer solutions for xp + yp = zp when p is a regular prime.
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Applications

0.1 Basic “Toy” Example: p = 3

Proof. The equation x3 + y3 = z3 has no solutions where x, y, and z are non-zero integers.

Consider this problem generalized to the ring of Eisenstein Integers;

Z[ω] = {a+ bω | a, b ∈ Z, ω = e2πi/3} (in other words, ω is a primitive third root of unity).

Assume that there exists a solution, (ξ, η, ψ) to ξ3 + η3 + ψ3 = 0 where ξ, η, ψ are

non-zero Eisenstein integers and pairwise co-prime.

Let λ = 1 + 2ω = −i
√
3 be a prime element in Z[ω] with norm N(λ) = 3. If α ∈ Z[ω]

and λ ∤ α, then α3 ≡ ±1 (mod λ4). Considering ξ3 + η3 + ψ3 = 0 (mod λ4), there is

exactly one of ξ, η, ψ that must be divisible by λ let ξ be that value.

Let ξ = λnγ, where λ ∤ γ and n ≥ 1. Substituting κ = −η, the equation becomes:

ϵλ3nγ3 = κ3 − ψ3

where ϵ is a unit, and λ ∤ γ, κ, ψ, with γ, κ, ψ pairwise co-prime.

Considering the equation mod λ4, we know κ3−ψ3 ≡ 0 (mod λ4), which implies n ≥ 2.

Next we must factor the right-hand side:

ϵλ3nγ3 = (κ− ψ)(κ− ψω)(κ− ψω2)

We also know the GCD of any two factors on the right is λ. The factors are pairwise

co-prime after dividing by λ which means we have

κ− ψ = ϵ1λν
3
1 κ− ψω = ϵ2λν

3
2 κ− ψω2 = ϵ3λν

3
3

where ϵ1, ϵ2, ϵ3 are units and ν1, ν2, ν3 are pairwise co-prime.

Comparing powers of λ we find ν1 = λn−1γ1 with λ ∤ γ1 and n−1 ≥ 1. Considering the

linear combination: (κ−ψ)+ω(κ−ψω)+ω2(κ−ψω2) = 0, we can substitute ν1 giving us

ϵ1λν
3
1 + ϵ4λν

3
2 + ϵ5λν

3
3 = 0, where ϵ4 = ϵ2ω and ϵ5 = ϵ3ω

2
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We can then substitute ν1λ
n−1γ1 and divide the equation by ϵ5λ which after some

rearrangements leaves us with

ϵ6λ
3(n−1)γ31 = ϵ7ν

3
2 − ν33 , where ϵ6, ϵ7 are units

Consider our problem mod λ3. Since n ≥ 2 the left side is congruent to 0 mod λ3.

Any Eulerian integer is congruent to exactly one of 0, 1,−1 (mod λ) and they cannot be

congruent to 0 therefore λ ∤ ν2 and λ ∤ ν3 so we have ν32 ≡ ±1 (mod λ3) and ν33 ≡ ±1

(mod λ3) Which leaves us with

0 ≡ ϵ7(±1)− (±1) (mod λ3)

This means λ3 | ϵ7 ± 1. The norm N(λ3) = 27 so the norm of ϵ7 − 1 or ϵ7 + 1 must be

a multiple of 27. After checking the units ϵ7 = ±1,±ω,±ω2 only ϵ7 = 1 or ϵ7 = −1 makes

this possible. Therefore, we can write the equation as:

ϵ6λ
3(n−1)γ31 = (±ν2)3 − ν33

This shows that we have found another solution of the same form but with the power of

λ reduced from n to n−1 which leads to an infinite descent which is impossible for a positive

integer n. The contradiction implies that our initial assumption of a non-trivial solution is

false. Therefore, the equation x3 + y3 = z3 has no solutions in non-zero integers. ■

0.2 Complex Example (Larger Number): k = 13

Proof. Theorem: x13 + y13 = x13 has no solutions in non-zero integers x,y,z.

We must consider two cases, 13 ∤ x, y, z and 13 | x, y, z given that x,y,z are pairwise

relatively prime.

First we can divide the entire equation by −y13 which leaves us with; x13

−y13
− 1 = z13

−y13
.

The left-hand side of this equation is a Cyclotomic polynomial that can be factored out

and then multiplied by −y13 to get the factors in the ring Z[ζ13].

x13

−y13
− 1 = x13 + y13 = (x+ y)(x+ ζ13y)(x+ ζ213y)...(x+ ζ1213y) = z13
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Case 1: Each of the factors (x + ζi13y) is an ideal in Z[ζ13] and pairwise relatively

prime. If a prime ideal p divided two of them, it would divide their difference, leading to

p | (y(1 − ζ13)) and p | (x(1 − ζ13)). Since 13 ∤ xy, p must divide (1 − ζ13). However, this

would imply (1− ζ13) divides all factors, leading to 13 | z, a contradiction.

Since the ideals are pairwise relatively prime and their product is
(
z
)13

each ideal is the

13th power of some ideal ai such that (x+ ζi13y) = a13i . 13 is a regular prime, so any ideal

whose 13th power is principal is itself principal, therefore ai = (ai) for some ai ∈ Z[ζ13],
and x+ ζi13y = uia

13
i for some unit ui ∈ Z[ζ13]

Consider x + ζ13y = ua13. Mod 13 a13 behaves like an integer. Units mod 13 involve

roots of unity. There is a congruence x + ζ13y ≡ (unit) × (integer) (mod 13Z[ζ13]). By
relating this to its conjugate x + ζ−1

13 y, we get a linear combination of powers of ζ13 with

integer coefficients being congruent to zero (mod 13Z[ζ13]):

x(1± ζk13) + y(ζ13 ± ζk−1
13 ) ≡ 0 (mod 13Z[ζ13]).

Since {1, ζ13, . . . , ζ1113} are linearly independent over Z/13Z, all these integer coefficients

must be divisible by 13, which contradicts 13 ∤ x, y.

Case 2: Since x, y, z are pairwise co-prime, 13 divides one of them. Assume 13 | z.
This implies 13 ∤ x and 13 ∤ y. Let z = 13kẑ with k ≥ 1 and 13 ∤ ẑ.

Let ζ = e2πi/13. In the ring Z[ζ], the ideal p = (1− ζ) is prime and 13Z[ζ] = p12.

When factored, z13 =
∏12

i=0(x+ ζiy). Since 13 | z, p | z. Thus p156k | (z)13 =
∏
(x+ ζiy).

As x+ ζiy ≡ x+ y (mod p), if p divides one factor, it divides all. So, p | (x+ ζiy) for all i.

The gcd of distinct ideal factors is gcd((x + ζiy), (x + ζjy)) = p (since gcd(x, y) = 1

and 13 ∤ x, y).

Let νp(α) be the exponent of p in the prime factorization of the ideal (α). Exactly one

factor has νp > 1. Assume that this factor is x + y. Then νp(x + y) = 156k − 12 and

νp(x+ ζiy) = 1 for i = 1, . . . , 12 assuming k ≥ 2.

This gives the ideal factorizations: (x+y) = p156k−12c130 (x+ζiy) = pc13i for i = 1, . . . , 12.

The ideals ci are pairwise co-prime and co-prime to p. Since p = 13 is regular, the ideals

ci must be principal. Let ci = (γi) for γi ∈ Z[ζ] co-prime to 1− ζ.
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This gives us the element equations: x+y = ϵ0(1−ζ)156k−12γ130 x+ζiy = ϵi(1−ζ)γ13i for

i = 1, . . . , 12, where ϵi are units. Using the identity ζ(x+ζ
−1y)+(x+ζy)−(1+ζ)(x+y) = 0,

substituting the element relations (for i = 1, 12), and dividing by (1− ζ) gives us:

ζϵ12γ
13
12 + ϵ1γ

13
1 − (1 + ζ)ϵ0(1− ζ)156k−13γ130 = 0

Let b1 = ϵ1/ϵ12, c1 = γ1, c12 = γ12, c0 = γ0. Through some substitutions we get:

ζc1312 + b1c
13
1 − (unit)× (1 + ζ)(1− ζ)13(k−1)c130 = 0

Consider this equation modulo 13Z[ζ] = p12. Since k ≥ 2, 13(k − 1) ≥ 13. The last

term vanishes as (1− ζ)13(k−1) is divisible by p13, and therefore by 13.

ζc1312 + b1c
13
1 ≡ 0 (mod 13Z[ζ13]). Let U = b1/ζ, so U is a unit. c1312 + Uc131 ≡ 0

(mod 13Z[ζ13]). By Fermat’s Little Theorem (a13 ≡ a (mod 13) in Z[ζ]): c12 + Uc1 ≡ 0

(mod 13Z[ζ13]).

So U ≡ −c12c−1
1 (mod 13Z[ζ13]). U is congruent to a rational integer modulo 13. By

Kummer’s Lemma for the regular prime p = 13, this implies U = η13 for some unit η.

Assuming U = 1, the equation before reduction becomes:

c1312 + c131 = (unit)′ × (1 + ζ)(1− ζ)13(k−1)c130

This final equation relates 13-th powers in a form similar to the original equation. The

factor (1 − ζ)13(k−1) contains 13k−1 which suggests a descent mechanism with k − 1 ≥ 1,

whereas we previously had k ≥ 2, a contradiction by descent.

Therefore, the initial assumption of a non-trivial integer solution must be false. ■

Conclusion

The rings of p-cyclotomic integers and their ideals prove that the diophantine equation,

xp+yp = zp, has no integer solutions when p is a regular prime. Delving into more general

cases of Fermat’s Last Theorem would require intricate knowledge of modular semistable

elliptic curves over Q, which is just a bit out of our depth—but with approximately 61%

of primes being regular, we’ve definitely made a solid start.
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