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Introduction

In this paper, we introduce p-cyclotomic rings and ideals, and examine how they can be
utilized to prove cases of Fermat’s Last Theorem—a conundrum that took over 350 years

to solve completely—when p is a regular prime.

History

In the late 1630’s, Pierre de Fermat first conjectured that 2" + y™ = 2" does not have
nonzero integer solutions for x,y and z when n > 2, claiming he had a remarkable proof
too large for his margin. This note was discovered after he passed; however, Fermat’s
own proof was never discovered for anything other than n = 4, leaving a mystery for

mathematicians after his death.

For centuries, number theorists fought with Fermat’s Last Theorem. FEuler had an
attempt for n = 3 that was flawed at first, but was eventually corrected. While proofs for

specific exponents emerged over time, a general solution remained elusive.

In the 19th century, progress on the problem was made with Carl Friedrich Gauss’s
introduction of cyclotomic fields and Ernst Kummer’s use of ideal numbers to handle fac-
torization within them. Kummer eventually proved FLT for all regular primes by utilizing

the ring Z[(,], where (, is a primitive pth root of unity for an odd, regular prime p.

Despite the progress made by Gauss and Kummer, FLT was not solved in full until 1994
by Andrew Wiles, who proved FLT by linking elliptic curves and modular forms through
the Modularity Theorem.

Even though the theorem has been fully proved, the mathematics developed in the
pursuit of its solution, especially cyclotomic numbers and fields, continue to be fundamental

in modern number theory research.



Background

Roots of 1

In the real numbers, the roots of 1 are +1 and —1. In the complex numbers, however,

there are more options: the roots of unity. The nth roots of unity are defined as:
Up := {wy, = e 2™k |1 <k < n}
As depicted below, roots of unity can be visualized as equal subdivisions of the unit

circle in the complex plane. Each set U, is closed under multiplication, contains a unique

multiplicative identity 1, and a unique multiplicative inverse wkfl for each element wy.

wo
w2
w3 W4y ws
w3
w2 w3 W4
3rd roots of unity (Us) 4th roots of unity (Uy) 5th roots of unity (Us)

A primitve root ( (or for more specificity, (,) can generate all the other roots; in
other words, when multiplied by itself repeatedly, it produces all other w; in the set. In
the diagram above, we can see wo € Uy is not a primitive root because (wq)? = (—1)? = 1,

so it cannot generate w; or ws.

Another way to look at the nth roots of 1 are with cyclotomic polynomsials:

O, (z) = H (z — e2mxk/ny = H(:U — () where ( is a primitive nth root of unity
1<k<n

ged(k,n)=1



Every cyclotomic polynomial is monic, of degree ¢(n), and, most notably, irreducible

in Z. This gives us a way to factor the polynomial ™ — 1 for any n into irreducibles:

" —1= H@n(x)

d|n

As an example, 2% — 1 = (2 + 1)(22 + 1)(z + 1)(z — 1) = Og(x)Dy(x) P2 ()P (z).

Rings

A ring (R,+, x) is an algebraic structure consisting of a non-empty set of elements R
with two binary operations—for consistency, referred to as addition + and multiplication

x—that satisfy the following Ring Axioms:

I. (R,+) is an abelian group: a nonempty set closed under addition, contains a unique

additive identity, and a unique additive inverse for each element
IT. Multiplication is associative: a X (b x ¢) = (a x b) x ¢ for all a,b,c € R

ITI. Multiplication is distributive (on both sides): (a +b) x ¢ = (a X ¢) + (b X ¢) and
ax (b+c)=(axb)+(axc)forall ab,ceR

Because it’s a group under addition, there are additive inverses, but there need not be
multiplicative inverses. If multiplication is commutative, we call R a commutative ring.

If there is unique factorization, we call R a unique factorization domain, or UFD.

An ideal I is a subring (a subset of R that still fulfills all the axioms) where ar € I
for all elements r € R,a € I. In other words, the subring is closed under multiplication
with elements in the subring and elements not in the subring, though still in R. We can
denote the ideal in terms of the generators: I = (gl, g2, ) An nonzero ideal I # R is a
prime tdeal if and only if | = JK = J =1 or K = [ for any ideals J, K € R, and any

nonzero ideal can be written uniquely as a product of prime ideals (up to order).

We can use an ideal I C R to make a quotient ring R/I, which, for simplicity, act

like taking the ring elements “modded” by the ideal elements.



p-Cyclotomic Integers

In class, we’ve used ring extensions of the integers Z such as the quadratic integers Z[\/&]
and the Gaussian integers Z[i]. In essence, this type of ring extension consists of intro-

ducing a new element « to an existing ring R to create a new, larger set:

Rla] := {cpa" + ...cta+ ¢ | ¢; € R}

This extension is called a polynomial ring in o over R, and may affect the primality
and irreducibility of elements in the original ring R. For example, we saw that when we
extend Z to Z[i], we get new primes: the Gaussian primes. Conversely, we saw that primes

in Z of the form 4k + 1 are no longer prime in Z[i]. We also introduced new units, +i.

Similarly, we can extend the integers to the p-cyclotomic integers Z[(,], where (,
is the primitive pth root of 1 for some odd prime p. Primes also change here. Notably,
p € Z[(p) is no longer prime, because (1 — (), (1 — ()2, ..., (1 = (,)P~! | p, and all of these
divisors are non-units. On the other hand, any element a where a = bc = b or cis a

unit is a cyclotomic prime. Finally, Z[(,] is only a UFD when p is a regular prime.

For the sake of brevity, we will not prove, but these are some important facts in Z|[(].
First, 1+ isaunit. 1 —(,1— g, vy 1 — (P71 are all associates. p = u(1 — ¢)P~! for some
unit u. (1—¢) is the only prime ideal in Z[(] that divides p. And lastly, any unit u divided

by its conjugate u is a root of unity.

Results

We consider cases of 2" + y™ = 2™ where the power is a regular prime, p > 2.
x \? z \*
a4y =2 = () —-1= <) because p is odd
-y -y
This is similar to the first steps of the method of intersecting lines. But here, we notice

p
the left hand side, (%y) — 1, is a cyclotomic polynomial in Z[¢], which we can expand to

p
(%y) —1= (%y — 1) (%y - () (%y - Cp_1>. Multiplying both sides by —y”, we get:

2’ +yP = (z+y)(z+ Cy).(z + P ly) = 2P



Because p is a regular prime, unique factorization holds. Now we consider two cases

where x,y, z are pairwise relatively prime integers: p{ zyz, and p | xyz.

Case 1: pfayz

Reconsidering the factors we got as ideals, we get (z)p =] (33+Ciy). Now we examine any
possible common ideal factors, denoted D, of (x+§ ky) and (a:—i—(ly) for some 0 < k <[ < p.
By the rules of divisibility, D will also be a factor of the difference of the two:

z+ Py — (z+ Cly) = Fy(1 — ¢F) = uy(1 = ¢) for some unit u

Because D | uy(1—¢) and (1—¢) | p = y(1—¢) | yp, it must be that D divides the
ideal (yp) We know D also divides the product, (z)p , but because ged(yp, 2P) = 1, this
forces D to be the unit ideal. Thus the ideals (x + Ciy) are pairwise relatively prime.

Because the product of the ideals is (z)p , it must be that each ideal (ZL‘ + (iy) = af for

some ideal a;. So (ai) is trivial in the class group of Q[¢]. Because p is a regular prime,
D

that means a; is principal, with generator a; € Z[(]. So we get = + ('y = ual.
Looking more closely at a;, we can write an expansion in Z[(]:
ai = by 1CP2 + ...+ b1C + by
al =b,_o+..+b+by (mod pZ[(])
Because each unit divided by its conjugate is =¢* for some 0 < k < p — 1, then:
z 4+ Cly = ual = :I:Ckﬂaf
= 2+ 'y = +CFua” = (2 +Cy)  (mod pZ[())
= o+ 'y F (y¢" T +a¢*) =0 (mod pZ[()) (1)

We consider the quotient ring (essentially equivalent to our mod above):

Z[c]/ (p) = ZIX]/ (p, (X)) 2= Z/ () [X]/@p(X) = Z/ (p) [X]/(X — )77



In the last isomorphic ring, {1, X, ..., X?~2} form a basis, but a linear combination
of any basis elements cannot be equivalent to zero without zero coefficients, so we get a

contradiction in eq. (1).

Case 2: p | xyz

Because z,y, z are relatively prime, that means p divides exactly one of them. Without
loss of generality, let p | 2, so 2P = p¥2P for some k > 1 and 2 relatively prime to p. Because

pF=wu(l—¢ )pk(p*l) for some unit u, we combine with our original equality to get:

H (:B + Ciy) = u(l — C)pk (é)p where each (:U + Ciy) may not be relatively prime

We examine the quotient rings Z[C]/(l — C) and Z[C]/(l — C)Q, noting that there are p
multiples of (1 —¢) in Z[¢]/(1 - ¢)*.

We observe that z + 'y = x +y mod (1 — C) for any 1 < ¢ < p — 1. Because we've
let the prime ideal (1 — C) divide (z)p , then (1 —C ) must divide some factor on the left as
well. Because all factors on the left are equivalent mod(l —C ), that means (1 —C ) divides

all of them. Now we move to Z[¢]/(1 — §)2.

Assume z + ('y Z 0 mod (1 — C)Q. So x + ('y reduces to some nonzero multiple of
1—¢ mod (1 — C)Q. With the results above, we know that there are p multiples of 1 —( in
Z[C]/(l — C)z, which means it must be that « + (‘y = 2 + (Jy for some 0 <7 < j < p— 1.
So (1 -¢ ")y =0 mod (1 — C)Q. However, 1 — (¥~ is an associate of 1 — ¢, which forces

1 — ¢ to divide y, a contradiction. Thus z + ¢*y =0 mod (1 - C)Q.
This sets a lower bound of k£ > 2.

Then there is some unique ig such that 2+¢%°y =0 mod (1—()2. We replace y := oy,
so we can now say ¢ +y =0 mod (1 — C)z, and = + C'y # 0 mod (1 — C)Q. Any common
ideal divisor of z,y will be of the form (x,y) (1 — C). D is the same for any i, so the
complement (cz) must be a pth power and not divisible by (1 —C ):

(z+Cy) = (2.9) (1 =) (@)} amd (z+9) = (2.9) (1= )" (e0)”



We then observe that (ci)p (co) P is a principal fractional ideal, and since p is regular,
(cl-) (co)_l is also a fractional ideal. So (cz) (Co)_l = t;Z[(C] for some t; € Q(¢)* that is
relatively prime to 1 — (. So we can rewrite ideals with elements:

(x + Ciy) (x n y)fl _ (ti)p(l _ C)—p(k—l) becomes sty (1 —CpD

Then we consider the equation:

C(+Cy)+(x+Cy) -1+ +y) =0

Cbp—ltg_l bltf
(=00 T (1= ¢

= Chpaty | +bith —(1+ (1~ P — g

—(14+¢) =0

If we reconsider t; = m;/n; for m;,n; € Z[(], we can factor out any powers of 1 — ( in

mj, n; to produce rational numbers ¢, ¢1, ¢p—1 € Z[(] that are relatively prime to (1 - ():

Chp1dh_ +brc] — (1+Q)(1 =P Def =0

_ 14+¢

Cbpfl
p—1 + @C}f = O mod pZ[C]
b1 0271

by =-7 mod pZ|(]

b1

g (1= e =0

—

Because cg_l and ] are both rational numbers, their quotient is a rational number,

and thus gbbl - isa rational number. By Kummer’s Lemma, which states that a unit w is
.

the pth power of some m € Z if u = m (mod pZ[(]) when p is a regular prime, we can

replace cbl;l,l with 1:

1+¢
Cbp—l

p—11TC1 — (1= D=0

Here, kK — 1 > 1, whereas we previously had k& > 2, a contradiction by descent.

Thus there are no nonzero integer solutions for aP + y? = zP when p is a regular prime.



Applications

0.1 Basic “Toy” Example: p =3

Proof. The equation x> 4 3® = 23 has no solutions where x, y, and z are non-zero integers.

Consider this problem generalized to the ring of Eisenstein Integers;

Zw) = {a+bw | a,b € Z,w = €>™/3} (in other words, w is a primitive third root of unity).

Assume that there exists a solution, (&,7,1) to & + 73 + ¢ = 0 where £, 7,7 are

non-zero Eisenstein integers and pairwise co-prime.

Let A = 1+ 2w = —iy/3 be a prime element in Z[w] with norm N()\) = 3. If a € Z[w]
and A { «, then o® = £1 (mod M\*). Considering &2 4+ n® + 3 = 0 (mod A\*), there is
exactly one of &, 7, that must be divisible by A let £ be that value.

Let £ = A"y, where A {+ and n > 1. Substituting x = —n, the equation becomes:
6)\371,)/3 — :‘13 o ¢3
where € is a unit, and At v, K, v, with v, k, 1) pairwise co-prime.

Considering the equation mod A\*, we know x3 —3 =0 (mod A\*), which implies n > 2.

Next we must factor the right-hand side:
X’y = (k= ¥)(r — Yw)(k — Yw?)

We also know the GCD of any two factors on the right is A. The factors are pairwise

co-prime after dividing by A which means we have
K—1= 61)\1/% K—Yw = 62)\1/23 K — Yw? = 63)\V§’
where €1, €9, €3 are units and v, 1», v3 are pairwise co-prime.

Comparing powers of A we find 11 = A" !4y with A {77 and n—1 > 1. Considering the

linear combination: (k — 1) +w(k —w) + w?(k —1w?) = 0, we can substitute v; giving us

61)\V% + 64)\1/23 + 65)\V§’ =0, where €4, = 6w and €5 = e3w?



We can then substitute v1 A" 14 and divide the equation by esA which after some

rearrangements leaves us with

66)\3(71_1)’}/% = 78 — Vg), where €g, €7 are units
Consider our problem mod A3. Since n > 2 the left side is congruent to 0 mod 3.
Any Eulerian integer is congruent to exactly one of 0,1, —1 (mod A) and they cannot be

congruent to 0 therefore A { v2 and A { v3 so we have v§ = £1 (mod A\3) and v3 = +1
(mod A?) Which leaves us with

0=er(£1l) — (£1) (mod X\3)

This means A3 | e7 = 1. The norm N (A3) = 27 so the norm of ¢; — 1 or e7 + 1 must be
a multiple of 27. After checking the units e; = +1, 4w, +w? only e; = 1 or e; = —1 makes

this possible. Therefore, we can write the equation as:

e\ P = (£1n)® — 14

This shows that we have found another solution of the same form but with the power of
A reduced from n to n—1 which leads to an infinite descent which is impossible for a positive
integer n. The contradiction implies that our initial assumption of a non-trivial solution is

false. Therefore, the equation z® + 3 = 23 has no solutions in non-zero integers. ]

0.2 Complex Example (Larger Number): k£ =13

Proof. Theorem: z'3 4+ y'3 = 2!3 has no solutions in non-zero integers x,y,z.

We must consider two cases, 13 { x,y,z and 13 | z,y, z given that x,y,z are pairwise
relatively prime.

First we can divide the entire equation by —y'2 which leaves us with; % —-1= %

The left-hand side of this equation is a Cyclotomic polynomial that can be factored out
and then multiplied by —y!3 to get the factors in the ring Z[(13).

13

X
5 - 1=2B 1y = (@ +y) (= + Qsy) (@ + (ay)--(x + ({Fy) = 2

-y




Case 1: Each of the factors (x + ({3y) is an ideal in Z[(13] and pairwise relatively
prime. If a prime ideal p divided two of them, it would divide their difference, leading to
p | (y(1—Ci3)) and p | (x(1 — ¢13)). Since 13 t zy, p must divide (1 — (13). However, this

would imply (1 — ¢13) divides all factors, leading to 13 | z, a contradiction.

Since the ideals are pairwise relatively prime and their product is (z) '3 each ideal is the
13th power of some ideal a; such that (z + ({3y) = az-13. 13 is a regular prime, so any ideal
whose 13th power is principal is itself principal, therefore a; = (a;) for some a; € Z[(13],

and z + C{3y = uia}?’ for some unit u; € Z[(13]

Consider = + {13y = ua'®. Mod 13 a'3 behaves like an integer. Units mod 13 involve
roots of unity. There is a congruence x + (13y = (unit) x (integer) (mod 13Z[(13]). By
relating this to its conjugate x + Cl_gly, we get a linear combination of powers of (13 with

integer coefficients being congruent to zero (mod 13Z[(13]):
(1 () + (G £ ¢y 1) =0 (mod 13Z[G)).

Since {1,(13,...,({a} are linearly independent over Z/13Z, all these integer coefficients

must be divisible by 13, which contradicts 13 1 x, y.

Case 2: Since z,y, z are pairwise co-prime, 13 divides one of them. Assume 13 | z.
This implies 13 { x and 13{y. Let z = 13¥2 with & > 1 and 13 1 2.

Let ¢ = €2™/13_ In the ring Z[(], the ideal p = (1 — ¢) is prime and 13Z[¢] = p'2.
When factored, '3 = [[;2,(z + C'y). Since 13| z, p | 2. Thus p'* | (2)13 = [[(z + (y).
As 2+ 'y =z +y (mod p), if p divides one factor, it divides all. So, p | (x + ('y) for all .

The ged of distinct ideal factors is ged((x + 'y), (x + (y)) = p (since ged(z,y) = 1
and 131 x,y).

Let vp(a) be the exponent of p in the prime factorization of the ideal (o). Exactly one
factor has 1, > 1. Assume that this factor is  + y. Then v(z + y) = 156k — 12 and
vp(z 4+ C'y) =1 for i =1,...,12 assuming k > 2.

This gives the ideal factorizations: (x+y) = plP*~12¢3 (24-CPy) = pel3 fori=1,...,12.
The ideals ¢; are pairwise co-prime and co-prime to p. Since p = 13 is regular, the ideals

¢; must be principal. Let ¢; = (7;) for v; € Z[(] co-prime to 1 — (.

10



This gives us the element equations: z+y = 60(1—0156"’_12733 x+§iy = ei(l—g)fyil?’ for
i=1,...,12, where ¢; are units. Using the identity ¢(z+( 1y)+(z+Cy)—(1+)(z+y) = 0,
substituting the element relations (for ¢ = 1,12), and dividing by (1 — () gives us:

Cerovis + et — (1 + Qeo(1 — )P0 13403 = 0

Let by = €1/€12, ¢1 = 71, c12 = 712, ¢o = Yo. Through some substitutions we get:

Cc%g + blc%‘g’ — (unit) x (1+¢)(1 — C)B(k*l)cég =0

Consider this equation modulo 13Z[¢] = p'2. Since k > 2, 13(k — 1) > 13. The last
term vanishes as (1 — ¢)'3*~1) is divisible by p'3, and therefore by 13.

Cel3 + biel? = 0 (mod 13Z[¢13]). Let U = b1/¢, so U is a unit. ¢ + Ucl® = 0
(mod 13Z[(13]). By Fermat’s Little Theorem (a'® = a (mod 13) in Z[(]): c12 + Uc; = 0
(mod 13ZK13])

So U = —cjac; ! (mod 13Z[¢13]). U is congruent to a rational integer modulo 13. By
Kummer’s Lemma for the regular prime p = 13, this implies U = n'? for some unit 7.

Assuming U = 1, the equation before reduction becomes:
el ef? = (unit) x (14 Q)(1 — )13Vl
This final equation relates 13-th powers in a form similar to the original equation. The

factor (1 — ¢)'3*=1 contains 13~ which suggests a descent mechanism with k — 1 > 1,

whereas we previously had k > 2, a contradiction by descent.

Therefore, the initial assumption of a non-trivial integer solution must be false. |

Conclusion

The rings of p-cyclotomic integers and their ideals prove that the diophantine equation,
2P 4+ yP = 2P, has no integer solutions when p is a regular prime. Delving into more general
cases of Fermat’s Last Theorem would require intricate knowledge of modular semistable
elliptic curves over Q, which is just a bit out of our depth—but with approximately 61%

of primes being regular, we’ve definitely made a solid start.
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